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Ecosystems are increasingly impacted by human activities, altering linkages among 
physical and biological components. Spatial community reassembly occurs when these 
human impacts modify the spatial overlap between system components, and there is 
need for practical tools to forecast spatial community reassembly at landscape scales 
using monitoring data. To illustrate a new approach, we extend a generalization of 
empirical orthogonal function (EOF) analysis, which involves a spatio-temporal eco-
system model that approximates coupled physical, biological and human dynamics. 
We then demonstrate its application to five trophic levels for the eastern Bering Sea 
by fitting to multiple, spatially unbalanced datasets measuring physical characteristics 
(temperature measurements and climate-linked forecasts), primary producers (spring 
and fall size-fractionated chlorophyll-a), secondary producers (copepods), juveniles 
(age-0 walleye pollock), adult consumers (five commercially important fishes), human 
activities (seasonal fishing effort) and mobile predators (seabirds). We identify the spa-
tial niche for each ecosystem component, as well as dominant modes of variability that 
are highly correlated with a known bottom–up driver of dynamics. We then measure 
spatial overlap between interacting variables (using Schoener’s-D) and identify that 
age-0 pollock have decreased spatial overlap with copepods and increased overlap with 
adult pollock during warm years, and also that adult pollock have increased overlap 
with arrowtooth flounder and decreased overlap with catcher–processor fishing effort 
during these warm years. Given the warming conditions that are projected for the 
coming decade, the model forecasts increased prey and competitor overlap involving 
adult pollock (between age-0 pollock, adult pollock and arrowtooth flounder) and 
decreased overlap with the copepod forage base and with the catcher–processor fish-
ery during future warming. We recommend that joint species distribution models be 
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extended to incorporate ‘ecological teleconnections’ (correlations between distant locations arising from known mechanisms) 
arising from behavioral adaptation by mobile animals as well as passive advection of nutrients and planktonic juvenile stages.

Keywords: empirical orthogonal function analysis, EOF, joint dynamic species distribution model, spatial community 
reassembly, vector autoregressive spatio-temporal model

Introduction

Climate change is altering productivity and structure of both 
terrestrial and marine ecosystems (Mora et al. 2018). Changes 
in ecosystem structure occur in part due to community reas-
sembly (Schaefer et al. 2008) wherein spatial patterns and/or 
phenology shift differently for individual species (Kuczynski 
and Grenouillet 2018). This leads to changing spatial and 
phenological overlap between ecosystem components, which 
in turn alters facultative/competitive interactions (Ettinger 
and HilleRisLambers 2017) as well as the selective filters 
that link regional and local species pools (Kuczynski and 
Grenouillet 2018).

Community reassembly is also likely to affect the spatial 
overlap between human activities and ecosystem services, 
thereby intensifying geopolitical and intersectoral conflicts 
between beneficiaries of ecosystem services (Mora et al. 2018, 
Pinsky  et  al. 2018, Baudron  et  al. 2020). Understanding 
community reassembly is important to mitigate these con-
flicts, not only to identify sustainable activities and to plan 
conservation or management responses (Gouezo et al. 2019), 
but also to forecast ecological conditions and community 
interactions for effective dynamic and adaptive ecosystem-
based management (Bonan and Doney 2018, Holsman et al. 
2019).

Accurate forecasting of ecological conditions requires 
assimilating process research and monitoring data, and sta-
tistical fitting of these data requires methods to assimilate 
spatially and seasonally unbalanced sampling (Cressie et al. 
2009). Forecasting spatial and temporal community reas-
sembly requires spatial multispecies models linking elements 
at all ecosystem levels including physical drivers, primary 
and secondary producers, consumers and human impacts 
(Thorson et al. 2019, Hollowed et al. 2020). Given that the 
data available to parameterize such ecosystem models often 
varies in spatial and temporal extent and resolution among 
ecosystem components, there is need for statistical tech-
niques that can accommodate monitoring data from mul-
tiple seasons with different temporal and spatial extents. In 
particular, statistical fitting of these data require methods 
to assimilate spatially and seasonally imbalanced observa-
tions (Cressie and Wikle 2011). Traditional data assimilation 
approaches for ecosystem modeling rely on relatively simple 
dimension–reduction methods such as principle components 
analysis or empirical orthogonal function (EOF) analysis 
(Trenberth  et  al. 2014). However, how best to account for 
imbalanced sampling within such approaches remains an 
open question, particularly in the context of spatio-temporal 
statistical models, where such EOF approaches have only 

recently been extended to account for spatial and temporal 
dependence (Thorson et al. 2020a).

Observed ecosystem responses are greatly dependent on the 
spatial and temporal scales at which they are analyzed and the 
scale of processes driving their dynamics (Levin 1992). While 
many ecological models assume that local population and 
community states are largely determined by local biotic and 
abiotic conditions, such local conditions are often spatially 
autocorrelated (Legendre 1993) and sometimes synchronous 
with those at geographically distant locations. For example, 
atmospheric and oceanic systems are driven by teleconnec-
tions (e.g. the El Niño Southern Oscillation) whereby physical 
mechanisms can cause simultaneous changes in local dynam-
ics at multiple locations (Alexander et al. 2002). Synchrony 
among plant and animal populations also frequently arises at 
broad spatial scales due to fitness optimization (local popu-
lations overwhelming potential predators) and oscillations 
arising in stage-structured populations (Gouhier et al. 2010). 
Spatial synchrony in population or community dynamics is 
determined by spatial variation in species–environment rela-
tionships, strength of density dependence and connectivity 
through animal movement (Walter et al. 2017 and references 
therein). Migration or dispersal can cause local population 
states to be dependent on conditions occurring both in past 
seasons and at different locations, as species responses are 
integrated over environmental conditions encountered annu-
ally or even throughout an individual’s lifetime. Therefore, 
ecosystem forecasting requires methods that can estimate 
nonlocal correlations among ecosystem components at mul-
tiple spatial extents, as well as correlations among seasons.

In the following, we demonstrate how to identify asso-
ciations among ecosystem variables representing physics, pri-
mary and secondary producers, consumers, human activities 
and managed or protected species (Fig. 1). Importantly, we 
identify spatial variation in each variable, but also allow spa-
tial patterns in one variable to be associated with the state 
of another variable at geographically distant locations, as 
well as variables measured in other seasons. By assimilating 
both measurements and projections of physical variables, we 
then forecast potential changes in overlap between predator 
and prey species, as well as human impacts. We conclude by 
outlining how future research can continue to improve our 
capacity to forecast multi-trophic and nonlocal dynamics.

Methods

We seek to develop a spatio-temporal ecosystem model that can 
measure and forecast community reassembly. Specifically, we 
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seek to account for nonlocal mechanistic associations between 
multiple system components (‘ecological teleconnections’) that 
are measured seasonally at different times throughout the year, 
while also forecasting these components via linkage to forecasts 
from an earth systems model. To do so, we expand recent devel-
opments to generalize EOF analysis using a spatio-temporal 
model (Thorson et al. 2020a). This generalization decomposes 
spatio-temporal patterns into three components:

1.	 Temporal variation (β) for each variable, where these 
intercepts are specified to follow a random-walk.

2.	 Spatial variation (ω) in the expected value for each vari-
able, representing long-term spatial patterns.

3.	 Spatio-temporal variation (ε), estimated as one or more 
dominant modes of ecosystem variability as well as a map 
representing the spatial response for each variable to these 
estimated modes of variation.

The third component of this decomposition is analogous to 
EOF analysis, and generates time series representing modes 
of ecosystem variability as well as maps of ecosystem response. 
However, we estimate this spatio-temporal generalization to 
EOF after accounting for expected spatial and temporal com-
ponents. This ‘joint modelling framework’ specifically allows 
for spatially and seasonally unbalanced sampling of ecosystem 
variables, while propagating ‘predictive errors’ when interpo-
lating between sampled locations and addressing ‘measure-
ment errors’ in both physical and biological variables.

Model structure

Specifically, we model the value y(g, c, t) for ecosystem vari-
ables at multiple locations in several years; g indexes each of ng 
modeled locations, c indexes each of nc variables and t indexes 
each of nt years (we use parentheses to indicate indexing for 
model variables and parameters, and subscripts to indicate 
variable names). Each variable is modeled using a main effect 
of time and space, as well as spatio-temporal variation:

y g c t c t c g c, , , ,* *( ) = ( ) + ( ) + ( )b b w1 2

Temporal main effect Sp
� ��� ���

aatial main effect Spatio-temporal interaction
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This additive decomposition estimates temporal and spatial 
main effects in addition to the spatio-temporal EOF term, 
such that EOF indices only represent interannual changes 
in spatial overlap between ecosystem variables. This is well 
suited to identifying community reassembly, but future stud-
ies may modify this decomposition (e.g. eliminating the tem-
poral main effect estimated here, such that estimated modes 
of variability incorporate both temporal and spatio-temporal 
variation). Temporal terms are specified to estimate correlated 
dynamics across variables; spatial and spatio-temporal com-
ponents estimate a spatial correlation function representing 
similarities for nearby locations; and spatio-temporal com-
ponents additionally include correlations among years. The 
temporal main effect includes two components, b1

* ,c t( )  and 

β2(c), and terms are identifiable by treating b1
* ,c t( ) , ω*(g, c) 

and ε*(g, c, t) as random effects. Intercept b1
* ,c t( )  follows a 

random-walk process for each variable with initial condition 
mb1

c( )  and variance sb
2 c( ) , and β2(c) is used to approxi-

mate a compound Poisson-gamma process for biomass sam-
pling data that includes zeros (Supporting information).

Specifically, the spatio-temporal term ε*(g, c, t) incorpo-
rates covariance among locations g, ecosystem variables c and 
years t. Conceptually, it represents synchronous changes in 
the spatial configuration of each ecosystem variable among 
years, and also specifies that certain variables are measuring 
the same underlying process:
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where a(g, x) is the association of each location g with a 
spatial knot x (i.e. A is a sparse matrix representing bilin-
ear interpolation between knots, where a(g, x) = 0 for all but 
three knots x for each location g), λc(c, fc) is the association 
between variable c and spatio-temporal factor fc (i.e. Λc is the 
loadings matrix among variables), and λt(t, ft) associates year 
t with an estimated mode of spatio-temporal variability (Λt 
is the loadings matrix among years). Previous studies have 
used a factor-decomposition among species (Thorson  et  al. 
2015) or among years (Thorson et al. 2020a), but this is the 
first to do both simultaneously. We specifically estimate Λt to 
predict synchronous changes in spatial configuration of each 
ecosystem variable, and specify Λc a priori to intercalibrate 
field measurements and forecasts of physical variables. In this 
instance, estimated loadings matrix Λt then approximates the 
covariance among years, Var T

t g c t t| ,
*ee LL LL( ) = .

In the following, we incorporate both field measurements 
and climate-linked projections of several ecosystem compo-
nents. Accounting for systematic differences between field 
measurements and model hindcasts is called ‘delta-change 
methods’ in earth systems models (Hay et al. 2000). We accom-
plish delta-change correction by modelling field-measurements 
and projections for a given process as two separate variables c1 
and c2, but assuming that these variables respond similarly to 
spatio-temporal terms, i.e. λc(c1, fc) = λc(c2, fc) = 1 for the factor 
fc representing this spatio-temporal variation in this ecosystem 
component, and λc(c1, fc) = λc(c2, fc) = 0 otherwise. Meanwhile, 
variable c1 and c2 have different spatial and temporal variation, 
i.e. such that the difference ω*(g, c1) − ω*(g, c2) represents the 
disagreement between field-measurements and hindcasted val-
ues for that process at each location g. Future research could 
further refine this approach by incorporating further restric-
tions on the covariance among categories Varc|g,t(ε*). For exam-
ple, structural equation modelling (Kaplan 2001) would define 
this covariance via a set of hypothesized causal relationships, 
e.g. where the dependency of biological variables upon changes 
in specific physical variables could be estimated and used to 
predict future counterfactual changes (Grace and Irvine 2020). 
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This allows a joint model (where biological and physical vari-
ables are both treated as response variables as done here) to 
still support inference similar to a conventional linear model 
(where physical variables are treat as ‘independent’ and biologi-
cal variables ‘dependent’), although we do not pursue the topic 
further here.

We then fit data using either a normal distribution and 
identity link function, e.g. for temperature, or a Poisson-link 
delta-gamma distribution (Thorson 2018) for zero-inflated 
samples of biology (Supporting information for details and 
interpretation), and both involve estimating a residual vari-
ance sb c2 ( )  as fixed effect. This Poisson-link delta-gamma 
model specifies a Bernoulli distribution using a complemen-
tary log–log link for encounter/non-encounters (i.e. the prob-
ability mass at zero for a delta-model), and simultaneously 
specifies that positive catches follow a Gamma distribution 
(the probability distribution for non-zeros in a delta-model), 
where variable exp(y(g, c, t)) is defined as the expected value 
for this sampling process. We also specify a hyper-distribu-
tion for spatial variation at a reduced set of ‘knots,’ and we 
specifically use the computationally efficient SPDE approach 
(Lindgren et al. 2011) involving an estimated decorrelation 
rate κ and a matrix representing geometric anisotropy H.

Estimation
We estimate all parameters using the vector autoregressive 
spatio-temporal (VAST) package (Thorson and Barnett 2017) 
in the R statistical environment (<www.r-project.org>). This 
software package permits alternative specifications for the spa-
tial correlation among locations, the use of covariates affecting 
density (to improve predictions) or the measurement process 
(to intercalibrate data from multiple sampling gears), and many 
other choices (Thorson 2019), although we do not explore 
these alternative specifications in detail here. The model inte-
grates across latent variables representing spatial variation ω(x, 
c) at every knot x and variable c, spatio-temporal variation ε(x, 
fc, ft) for every mode of variability ft and each modeled category 
fc, and changes in intercepts b1

* ,c t( ) ; these latent variables are 
treated as random effects. The model involves estimating fixed 
effects, including the initial intercept for each variable mb1

c( )  
and the second intercept β2(c) for those variables fitted using a 
delta-model, as well as variance parameters including the mag-
nitude of residual variation sb c2 ( )  for each variable, loadings 
matrix among years Λt, the variance of the random-walk vari-
ance in intercept sb

2 c( ) , as well as decorrelation rate κn and 
geometric anisotropy H.

The model estimates fixed effects by identifying their val-
ues that maximize the marginal likelihood. The marginal 
likelihood, in turn, is calculated when integrating the joint log-
likelihood across the value of random effects. This multidimen-
sional integral is approximated by the Laplace approximation 
using Template Model Builder (Kristensen et  al. 2016), and 
TMB also calculates the gradient of the approximated mar-
ginal log-likelihood which is then minimized within the R sta-
tistical environment (<www.r-project.org>). The probability 
of spatial variables is approximated using the stochastic partial 

differential equation (SPDE) approximation (Lindgren et  al. 
2011), and standard errors are calculated using a generalization 
of the delta method (Kass and Steffey 1989). For identifiability, 
λt(t, ft) = 0 for all ft > t (i.e. Λt is constrained to be a lower-tri-
angle matrix), and estimated columns of Λt are all orthogonal 
as a result of maximum-likelihood estimation. We then apply a 
‘PCA’ rotation to Λt prior to presenting results (Thorson et al. 
2016); this rotation specifies that the first column of the rotated 
matrix represents the largest portion of variance explained by 
Λt, and therefore represents the ‘dominant mode of variability’ 
similar to that estimated by EOF analysis.

Ecosystem components and data compilation

Model components
We fit to twenty ecosystem variables obtained from four seasons 
spanning 1982–2030 in the eastern Bering Sea (Supporting 
information). We specifically compile seasonal records of:

1.	 Physical environment, including summer bottom and 
winter surface temperature records (Lauth and Conner 
2016, Huang et al. 2017) as well as regional ocean mod-
elling system (ROMS) hindcasts and projections under 
future climate scenarios (Hermann et al. 2019);

2.	 Primary producer concentration, in this case size-fraction-
ated phytoplankton (0.7–10 µm and > 10 µm) during 
spring and fall (Eisner et al. 2016, Lomas et al. 2020);

3.	 Secondary producer concentration, in this case Calanus 
glacialis and C. marshallae copepodite stage 3 to adult 
concentrations (‘copepod concentrations’) in spring and 
fall (Eisner et al. 2014, Kimmel et al. 2018);

4.	 Abundance of age-0 pollock in near-surface waters during 
fall (Farley et al. 2007);

5.	 Bottom-associated fish and crab species that are subject to 
commercial fishing, sampled by bottom trawl during the 
summer (Lauth and Conner 2016);

6.	 Human activities, in this case commercial records of fish-
ing effort from catcher–processor fleet in the winter/
spring (‘winter A-season’) and summer/fall (‘summer 
B-season’); and

7.	 Migratory bird species that overlap with human activities, 
in this case, seabirds during fall foraging (Drew and Piatt 
2015).

Each variable is sampled at locations (latitude, longitude and 
vertical position above the seafloor) that vary among variables 
and years (Supporting information). We specifically empha-
size densities and changes in spatial overlap between adult 
pollock, juvenile age-0 pollock that adult pollock cannibalize 
and arrowtooth flounder which consumes juvenile and com-
petes with adult pollock (Supporting information for ecolog-
ical relationships among variables). We also interpret overlap 
between age-0 pollock and fall copepod concentrations, adult 
pollock and the fall catcher–processor fleet, as well as the fall 
catcher–processor fleet and seabirds (shearwaters). The region 
had high interannual variability in regional temperature from 
1982 to 1999, followed by warm and cold ‘stanzas’ represent-
ing lower-frequency fluctuations in temperature.
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Model specification and interpretation
We specify that summer bottom temperature has the same 
spatio-temporal variation for both net-sensor measurements 
and ROMS hindcasts/projections, and the same for winter 
surface temperature for the NOAA reanalysis product and 
ROMS hindcasts/projections. We estimate spatial and spa-
tio-temporal variation at 100 knots, and project from these 
knots to 8000 extrapolation cells (a.k.a. quadrature points) 
when calculating derived quantities; knots are distributed in 
proportion to the 8000 extrapolation-grid cells, and we con-
firm that results are similar when specifying fewer knots. We 
include two modes of spatio-temporal variation ( nft

= 2 ) 
and focus upon the rotation of the loadings matrix Λt, where 
the first column λt of this rotated matrix represents the domi-
nant mode of spatial variability in the ecosystem. We spe-
cifically compare this dominant mode of variability with the 
spatial extent of near-bottom waters less than or equal to 2°C 
(termed ‘cold pool extent’); previous process research suggests 
that cold-pool extent is a major organizing principle for eco-
system function in the eastern Bering Sea (Sigler et al. 2016). 
We include only two modes because some modeled years (e.g. 
2020–2030) only have two measured variables, and estimat-
ing additional columns of Λt would not be identifiable given 
the current model structure. This assumption could be relaxed 
in future studies by imposing a distribution on the temporal 
dynamics of Λt, e.g. specifying a hyperdistribution for λt(f, t) 
given its value in the previous year λt(f, t − 1). However, we 
have avoided this for clarity of presentation in this case-study 

demonstration, and recommend it as a topic for future devel-
opment and exploration. Including two modes (rather than 
a single mode) allows for changes in spatial overlap that are 
more complicated than can be explained purely via a single 
time-series indicator. Future studies could additionally inter-
pret the 2nd mode (rather than just the first as we do here); 
this has done by past studies (Thorson et al. 2020a), although 
we avoid the topic here for clarity of presentation.

We also compute the spatial overlap between select ecosys-
tem components, where overlap is defined using Schoener’s-D 
(Schoener 1970, Carroll et al. 2019) as calculated at each of 
8000 extrapolation points that are uniformly distributed 
throughout the modeled area. We interpret changes in spatial 
overlap as driving a likely change in the strength of ecologi-
cal linkages between components, and therefore as indicating 
community re-assembly under projected climate conditions.

Model validation
Finally, we provide a self-test simulation experiment to con-
firm that parameters are identifiable and that confidence 
intervals have an appropriate width. In particular, we conduct 
50 simulation replicates. In each simulation replicate we:

1.	 Simulate new sampling data (at the same location and 
time for each variable) conditional upon estimated fixed 
effects and predicted random effect values;

2.	 Refit the estimation model to simulated data and record 
the loadings matrix Λt that replicate;

Figure 1. Visualization of seasonal timing (horizontal axis, from winter on the left to fall on the right) and vertical availability of data (verti-
cal axis, from seafloor on bottom to surface at top) of physical and biological variables (see Supporting information for full list).
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3.	 Apply the same PCA rotation, and then reorder columns 
such that the first column is maximally correlated with the 
dominant axis of variability from the original fit;

4.	 Compare the ‘true’ dominant mode of variability λt (as 
estimated from the original fit to real data) with λt esti-
mated in each simulation replicate, specifically by calcu-
lating the correlation.

For a well-performing model, the distribution of λt estimates 
will be distributed around the original value and will fall 
approximately within the originally estimated confidence 
intervals.

Results

The spatio-temporal model estimates large differences in 
average spatial distribution for physics measurements and 
forecasts, phytoplankton and meso-zooplankton, fish/deca-
pod densities, fishing effort and seabird components of the 
ecosystem (Fig. 2). For example, small and large size-frac-
tion chlorophyll concentrations are highest in spring near 
Zhemchug Canyon in the northern Bering Slope while fall 
large size-fraction chlorophyll concentrations are higher 
near the Pribilof Islands and inshore near Nunivak Island 

Figure 2. Spatial variation in the value of each variable included in the model (ωg), representing variation between locations in the long-term 
average value. The difference between bottom temperature (BT) and surface temperature (SST) measurements and associated ROMS fore-
casts (ROMS_BT and ROMS_SST) represents differences in the average measurement relative to ROMS predictions, which is analogous 
to a delta-correction method for intercalibrating these two data sources.
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and the Kuskokwim River delta. The model estimates high-
est copepod concentrations over the middle shelf in spring 
with increased abundance over the outer shelf and the north 
Bering Sea in fall. Similarly, average distribution for demer-
sal fish and crustacean species is highly species-specific, with 
highest densities for pollock and cod in the middle domain, 
for tanner crab in the southern portion, and snow crab in 
the northern portion; juvenile (age-0) pollock have higher 
concentration to the south of adult pollock. The catcher–pro-
cessor fleet in the winter A-season has a more southern dis-
tribution of fishing effort than during the summer B-season. 
Average distributions of seabirds were also distinct between 
species: northern fulmars are most abundant along the outer 
shelf while high densities of shearwaters are persistent along 
the inner shelf near Bristol Bay.

The model then estimates the dominant mode of variabil-
ity in spatial distribution for each ecosystem component after 
controlling for these differences in average spatial distribution. 
The dominant mode of variability 1982–2018 is highly corre-
lated with the spatial extent of cold near-bottom waters as mea-
sured during bottom trawling (Fig. 3). Spatial responses to this 
mode of variability vary widely among ecosystem components 
(Fig. 4); in some cases, these patterns are well recognized while 
others have received less attention. For well-studied exam-
ples, pollock and cod show elevated densities in the northern 

portion near St. Matthew Island in years with a smaller-than-
average cold-pool, and arrowtooth flounder shows elevated 
densities throughout the middle domain in these same years. 
Concentrations of small and large chlorophyll increase in the 
middle shelf in spring and near Zhemchug Canyon in fall, 
while spring copepod densities increase and fall copepod den-
sities decrease near Bristol Bay in the southern middle domain. 
The winter A-season fishery shows elevated effort near Bristol 
Bay while the summer B-season shows elevated effort through-
out the middle domain. Finally, shearwaters are clustered in 
the central and southern portions of the study area, especially 
along the inner shelf near Bristol Bay.

This dominant mode of variability is then projected over 
the coming decade (2020–2030) by using information in the 
ROMS hindcast/projection variables (Fig. 5, showing evenly 
spaced years); it projects that the ecosystem is likely to remain 
similar to warm conditions over the coming decade (2020–
2030). Based on these predicted conditions, the model proj-
ects increased densities of arrowtooth flounder throughout 
the middle domain in 2029, a northward shift in pollock, 
and elevated summer B-season fishing effort in the middle 
domain relative to patterns in earlier years, 1983/1994/2006 
(i.e. comparing bottom with higher rows in Fig. 5).

These patterns paint a clear picture for how bottom–up 
environmental conditions have driven shifts in spatial overlap 

Figure 3. Dominant mode of ecosystem variability for spatio-temporal variation (black lines ± one standard error, left y-axis scale) and 
cold-pool extent (blue line, right y-axis scale), while listing the Pearson correlation (top-left corner), while indicating the year (2019) sepa-
rating physical hindcasts and projections (vertical dotted line).
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between prey, predators and human activities. We illustrate 
shifts in overlap between pollock and other system compo-
nents (Fig. 6); a warm stanza (1999–2005) was associated 
with elevated overlap with arrowtooth flounder and decreased 
overlap with B-season fishing effort. This was followed by a 
cold stanza (2006–2013) with larger cold-pool extent, during 
which walleye pollock showed decreased overlap with arrow-
tooth flounder and increased overlap with B-season fish-
ing effort. The subsequent warm stanza (2014–2019) again 
showed opposite patterns which are expected to continue 

into the future (2020–2023), resulting in greater overlap 
with an important predator (arrowtooth flounder) and lower 
overlap with human impacts (fishing effort).

Finally, the self-test simulation experiment confirms that 
the model is able to accurately reconstruct the ‘true’ domi-
nant mode of variability when data are simulated conditional 
upon estimated fixed-effect and predicted random-effect 
values (Fig. 7). Specifically, the correlation between original 
and re-estimated values for the dominant mode of variabil-
ity is high (average correlation = 0.95), and above 0.75 in 

Figure 4. Spatial response for each variable to a positive value of the primary mode of ecosystem variability (shown in Fig. 3); see color 
legend in bottom-left side of each panel. Variation for biological variables is modeled in log-space, such that a value of 0.1 at location s 
indicates that a year t when index le¢ ( ) =t,1 1  is expected to have a 10% increase for that variable at that location. Variation for physical 
variables is modeled in natural space, such that a value of 0.1 at location s indicates a 0.1 increase for that location when le¢ ( ) =t,1 1 .
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all replicates. This high precision is consistent with the tight 
confidence intervals from the original fit (e.g. comparing 
black lines in Fig. 7 with intervals in Fig. 4). However, this 
experiment does not explore the potential impact of model 
mis-specification upon estimation performance, and this is a 
useful topic for future research.

Discussion

We have shown how to identify modes of ecosystem vari-
ability resulting in community reassembly, as measured by a 
common overlap metric and forecasted using earth systems 
models that are driven by global climate projections. To do so, 
we fitted > 150 000 records spanning four trophic levels (pri-
mary, secondary producers, juvenile and adult consumers), as 
well as ecosystem services regarding human exploitation and 
migratory species dynamics. The model identifies the spatial 
niche for each system variable as well as two modes of ecosys-
tem variability, where the dominant index is highly correlated 
with the spatial extent of cold near-bottom waters. By esti-
mating variable-specific spatial responses to these modes of 
ecosystem variability, the model identifies that age-0 pollock 

has decreased spatial overlap with copepods and increased 
overlap with adult pollock during warm regional conditions, 
and also that adult pollock have increased overlap with arrow-
tooth flounder and decreased overlap with catcher–proces-
sor fishing effort during these warm years. Given that warm 
conditions are projected to persist over the coming decade, 
the model forecasts increased predator–prey overlap involv-
ing adult pollock (between age-0 pollock, adult pollock and 
arrowtooth flounder) and decreased overlap with the cope-
pod forage base and with the catcher–processor fishery dur-
ing future warming.

Joint analysis of multiple trophic levels (as done here) can 
synthesize and integrate results that have been studied previ-
ously for individual taxa in isolation. For example, Stevenson 
and Lauth (2019) document northward shifts for gadids 
and flatfishes during recent warming (including pollock, 
cod and arrowtooth flounder as illustrated here), and Duffy-
Anderson et al. (2017) documented synchronous northward 
shifts of elevated spring chlorophyll and juvenile (age-0) 
pollock concentrations. Similarly, Suryan  et  al. (2016) and 
others have documented environmental associations and 
interannual variability for seabirds, and Spencer et al. (2016) 
forecasted the management implications of changing overlap 

Figure 5. Illustration of estimates for selected variables (columns) in evenly spaced years (rows), showing from left to right column: bottom 
temperature, fall copepod (Calanus glacialis and C. marshallae C3-adult) numbers, fall age-0 pollock biomass, summer demersal pollock, 
summer demersal arrowtooth flounder, B-season fishing effort; bottom row visualizes variables given projected physical conditions in 2029.
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between arrowtooth and adult pollock during future warm-
ing. Typically, however, these and other regional analyses for 
the eastern Bering Sea have not synthesized patterns across 
multiple trophic levels, and thus did not illustrate climate-
driven community reassembly (as we do here). By exploring 
each variability individually, these past studies for the east-
ern Bering Sea have been unable, e.g. to identify that warm 
stanzas are problematic for age-0 pollock (and subsequent 
recruitment to the fishery at approximately age-3) for two 
separate reasons: both the decreased overlap with copepods 
and increased overlap with cannabilistic adult pollock. These 
and similar insights are only feasible in a joint model for mul-
tiple trophic levels and, importantly, the model also provides 
a formal mechanism to forecast these linkages under future 
climate conditions (in this case projecting continued obsta-
cles for survival of age-0 pollock). We recommend future 
studies comparing the jointly estimated mode of variability 
(as shown here) with the estimated mode of variability for 

each trophic level and/or ecosystem component individually. 
This would then identify whether this mode of variability is 
truly synchronous across all system variables, or results are 
being highly leveraged by individual model components.

Our model joins the growing list of joint species distribu-
tion modelling approaches (Latimer  et  al. 2009, Hui  et  al. 
2013, Clark et al. 2014, Pollock et al. 2014, Thorson et al. 
2015, 2020a, Warton et al. 2015, Ovaskainen et al. 2017a). 
The preceding studies all estimated covariance (a.k.a. applied 
ordination) across the occurrence or density of species at a 
given location. Fewer studies have estimated correlation 
over time (Thorson  et  al. 2016, Ovaskainen  et  al. 2017b, 
Schliep  et  al. 2018), and those have typically estimated an 
autoregressive structure to approximate species interactions 
(sensu Ives  et  al. 2003). By contrast, we extend research 
applying EOF analysis to community ecology (Thorson et al. 
2020a), while also using a spatial correlation function to 
incorporate data following spatially unbalanced designs 

Figure 6. Estimates of Schoener’s-D index of overlap between fall surface age-0 pollock and fall vertically integrated copepod densities (top 
row), summer demersal adult pollock and fall surface age-0 pollock biomass (2nd row), summer demersal pollock and arrowtooth biomass 
(3rd row), summer demersal pollock and summer/fall midwater fishery effort (4th row), or summer/fall midwater fishery effort and sum-
mer/fall shearwater concentrations (line: estimate; shaded area: ± one standard error), while indicating the year (2019) separating physical 
hindcasts and projections (vertical dotted line). Each panel also indicates the last year of biological data (dotted vertical line), representing 
the year when the model starts forecasting biological variables based on a projection of ocean physics.
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(Thorson et al. 2015, Tikhonov et al. 2020). Applying EOF 
to community ecology identifies correlations between annual 
variation in density (within or among species) at any two 
locations, where these locations can be geographically dis-
tant from one another and can be more tightly correlated 
than locations between the two. Future studies could apply 
a similar approach to fewer samples (e.g. in ecosystems with 
less extensive sampling for lower trophic levels), and this 
could still identify dominant modes of ecosystem variability 
(Thorson et al. 2020a) albeit without scope to integrate these 
results across trophic levels.

Wallace and Gutzler (1981) defined teleconnections as 
‘contemporaneous correlations between geopotential heights 
on a given pressure surface at widely separated points on 
earth,’ where these nonlocal atmospheric and oceanographic 
correlations arise due to stochastic but predictable oscillations 
in physics mechanics. We document a similar occurrence of 
teleconnections in ecosystem ecology, where the modes of 
variability estimated here represent correlations between, e.g. 
spring copepod concentrations in Bristol Bay and summer 
demersal pollock densities in the northern middle domain. 
These teleconnections arise in community ecology from 
physiological and behavioral responses to spatial correlations 

in regional climate; we hypothesize that these physiologi-
cal and behavioral mechanisms are nearly as predictable as 
the causal mechanisms underlying physical teleconnections. 
Estimating nonlocal associations will be increasingly impor-
tant when linking joint SDMs to climate variables, e.g. when 
forecasting future changes in community overlap. In particu-
lar, nonlocal dynamics will occur both from migratory and 
movement behaviors of large-bodied animals, but also from 
physical advection of nutrients and passive-dispersing juve-
niles (pollen, plankton and parasites).

Our method identifies shifts in overlap between ecosys-
tem components across five trophic levels. This result pro-
vides indirect support for climate-driven shifts in ecosystem 
interactions, but we recommend further research to incor-
porate proximal measures of interactions. For example, 
stomach-content analysis can identify predation between 
age-0 pollock, demersal pollock and arrowtooth flounder 
(Livingston et al. 2017), discrete-choice models fitted to fish-
ery catch rates or revenue can identify fishery performance 
(Haynie et al. 2009), and seabird observers record variability 
in seabird bycatch (Anderson et al. 2011). Importantly, these 
analyses are increasingly feasible within a spatio-temporal 
modelling framework (Grüss  et  al. 2020), such that physi-
ological and process research can be incorporated into spa-
tial ecosystem models such as this. We therefore recommend 
further research to fit both distributional data (like those 
used here) and process data (growth, predation, maturity and 
reproduction) to improve forecasts of community reassembly. 
Ideally, this could be done using reanalysis experiments (i.e. 
withholding recent data when fitting the model, forecasting 
ecosystem changes and comparing with these recent data) to 
determine whether forecasted changes in overlap can predict 
future changes in physiological rates.

Scenario planning under alternative climate futures is 
an important step towards climate adaptation and resilience 
(Jurgilevich et al. 2017), and designing effective management 
requires that models can approximate a wide range of possible 
scenarios (Punt  et  al. 2014). Scenario planning is especially 
important in modeling the effectiveness of climate adapta-
tion and mitigation measures and potential feedbacks with 
physical, chemical and biological systems (Bonan and Doney 
2018). For example, conservation and restoration that benefit 
multiple stakeholders while addressing climate adaptation and 
mitigation have received particular attention in climate change 
literature and assessments (Guerry  et  al. 2012, Golet  et  al. 
2018). Earth system models capture some elements of poten-
tial feedbacks between climate and ecological processes (Bonan 
and Doney 2018) but often not at the regional scale needed 
for EBM and conservation planning needs. For this, high 
resolution ecosystem models as presented herein can inform 
likely climate trajectories as well as resulting shifts in spatial 
or temporal reassembly (Theobald et al. 2017, Gouezo et al. 
2019). This then allows stakeholders and managers to evaluate 
unavoidable trade-offs, e.g. between food security and conserv-
ing protected species, subsistence and commercial resource use, 
and current versus future resources.

Figure 7. Comparison (top panel) of dominant mode of variability 
(y-axis) in each year (x-axis) from original fit (blue line) and esti-
mated mode of variability from each of 50 simulation replicates 
when simulating new data and refitting the model (black lines), as 
well as the correlation (bottom panel) between original and re-esti-
mated mode of variability in each simulation replicate.
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